! DecisionBrain

Smarter Decisions. Better Results.

Migrate a DOC Application
from 4.0.0 FP2 to 4.0.0 FP3

June 15, 2020

Copyright © 2012-2019 DecisionBrain S.A.S. All rights reserved.
This document is confidential, and may not be disclosed to third parties without DecisionBrain's express written
permission.

IBM | Migrate to FP3 from FP2 {;;DecisionBrain

Porting to FP3 from FP2
How To Port/Migrate
[2] Generate An Empty FP3 Application
Prepare Empty Application Generation
Generate An Empty Application
[3] Copy Code from Original FP2 Application to Empty FP3 Application
[4] Build FP3 project
[5] Merge FP3 changes into FP2 project
Scaffolding Changes

Front-end changes
Imports
Porting custom widgets

Keeping custom style

O VW VU 0w 0 3§ o o 0 M N W W N

Using platform style

o

GeneCustomWidgetWrapper » GeneDynamicWidget

IBM | Migrate to FP3 from FP2 {.;;DecisionBrain

Porting to FP3 from FP2

This document describes how to port a 4.0.0 FP2 application into a 4.0.0 FP3
application.

Main changes:

e JDKB8 is not supported anymore. You should now use JDKI11. This has an
impact on:

o your development environment. Update your IDE project settings to
use JDKI11 instead of JDK8.

o the way you build the docker images that will be used to deploy your
application. If you have Dockerfiles defined, check that they use the
proper JDK. The default Dockerfile definition has been updated in
the template used to generate applications.

e The Scaffolding Structure has changed
e Scripted Tasks

o access to the current scenario has been changed. For more
information, see engineTask code example in
execution-service-extension/src/.../Tasks.java

e Web Components:
o are now delivered as libraries
o are based on Angular 9.1.x

IBM | Migrate to FP3 from FP2 {.;}DecisionBrain

How To Port/Migrate

If you want to use the new scaffolding organization, it is advised to perform as
follows:

ensure your FP2 project source is properly committed under GIT

generate an empty application using FP3

copy the existing code from the FP2 projects to the newly generated ones
build the generated FP3 project

copy the modifications back from the generated FP3 project to the FP2 and
delete the obsolete projects from the FP2 project

build the FP2 project

commit your changes

NN

N o

Those steps are described in detail in the following sections.

[2] Generate An Empty FP3 Application

Prepare Empty Application Generation
To generate the empty application:

e create a new folder called “fp3”
e copy in that folder

o theentities.jdl file that describes your data model (it can be found
in gene-model/src/main/resources)

o thegenerator.sh file provided with FP3 (see section Script for
Application Generation of the Installation section of DOC 4.0.0 FP3
Documentation)

o the .yo-rc.json file produced when you originally generated your
application.

Example of .yo-rc.json file:

{
"@gene/generator-gene": {
"promptValues": {
"projectName": "aircraft-maintenance",

"projectTitle": "Aircraft Maintenance Optimization",

https://ibm-doc-documentation-400fp3.public.decisionbrain.cloud/documentation/#/prerequisites/gene-installation?id=script-for-application-generation-development
https://ibm-doc-documentation-400fp3.public.decisionbrain.cloud/documentation/#/prerequisites/gene-installation?id=script-for-application-generation-development
https://ibm-doc-documentation-400fp3.public.decisionbrain.cloud/documentation/#/prerequisites/gene-installation?id=script-for-application-generation-development
https://ibm-doc-documentation-400fp3.public.decisionbrain.cloud/documentation/#/
https://ibm-doc-documentation-400fp3.public.decisionbrain.cloud/documentation/#/
https://ibm-doc-documentation-400fp3.public.decisionbrain.cloud/documentation/#/

IBM | Migrate to FP3 from FP2 {.‘:}DecisionBrain

"destination": ".",
"package": "com.aircraftmaintenance",
"collectorClass": "AircraftMaintenance",

"inputFileType": "jdl",

"inputFile": "./entities.jdl",

If you do not have .yo-rc.json file, create one using the following information:

e projectName: thisisthe xxx value that has been used to prefix sub-projects
like xxx-libs or xxx-services
projectTitle: thisis the title you have defined for your project toolbar
package: this is the java package you have defined
collectorClass: this is the java class name you have defined. You can find it at the
beginning of your entities jdl file

Generate An Empty Application

Use the generator.sh command to generate your application.
S cd fp3
$ 1s -al
.yo-rc.json

entities. jdl
generator.sh

S ./generator.sh -v 4.08.0-fp3

IBM | Migrate to FP3 from FP2 {,;;DecisionBrain

[3] Copy Code from Original FP2 Application to Empty FP3 Application
Refer to the Scaffolding Changes section below, for details on the changes.
Configuration Files

build.gradle update this file to include any specific change you performed
settings.gradle: Update this file to include custom projects you may have
added (in xxx-1ibs Or iN workers)

e gradle/templates: if you edited the contents of this folder, make sure your
changes are applied in the new application folder. Note that the
versions.gradle file has been updated and refers to different version
numbers for some of the dependencies.

Deployment

The following services have new configuration items (SPRING_DATA_MONGODB*
and SERVICES_PERMISSION_MONGODB*). Make sure to update your docker-compose
files and helm charts if needed :

backend-service
data-service
execution-service

scenario-service

Also note that the data-service now uses web-sockets. The gateway-service now
declares the following route (should be presen)t:

- id: data service websocket
uri: ws://${services.data.host}:${services.data.port}
predicates:
- Path=/websocket/data/**
filters:
- StripPrefix=2

Source code

e =xxx-libs:your existing code should be copied as-is to the corresponding
projects in the processing folder
e xxx-workers:Yyour existing code should be copied as-is to the workers folder
o if you created a custom Dockerfile for your workers, remember to use
JDKT
® xxx-services/web-frontend-service/src/app/modules
o ifyou created custom modules,
m they should be copied into the web/src/app/modules

IBM | Migrate to FP3 from FP2 {.;;DecisionBrain

m imports must be updated in your custom code (see section
Front-end changes below)
o ifyou did not create any customization, you do not need to change
anything in the web project.

® Dbackend-service: if you created extensions for that service (Routines, ...), copy
those files in the extensions/backend-service-extension project. You may have
to transfer or copy some dependencies in the build.gradle script of the target
directory.

e data:ifyou created extensions for that service (Custom queries, ...), copy those
files in the extensions/data-service-extension project.

[4] Build FP3 project
Go to the root of the FP3 project and call the usual commandes:

$./gradlew build
$./gradlew docker

[5] Merge FP3 changes into FP2 project
During this phase, you will have to delete the now-obsolete FP2 projects

e xxx-libs content
® Xxxx-services content

IBM | Migrate to FP3 from FP2 anecisionsrain

Scaffolding Changes

This section describes precisely the project structure changes. The goal of those
changes is to further clarify the projects where development may occur:

® xxx-1libs » processing and extensions

® xxx-services/workers » workers

® xxx-services/web-frontend-service » web

All the other projects should not require any development/modification.

FP2

xxx-libs
e engine
e execution-service-extension
e model-checker

XXX-services

workers
e engine-worker
e checker-worker

XXX-services
e backend-service
gene-services
e data
e execution-service
e gateway-service
e scenario-service

XXX-services
e web-frontend-service

FP3
extensions
e backend-service-
extension
e data-service-exte
nsion
e execution-service-
extension
processing
e engine

e checker

Contents have been
moved to
workers
e engine-worker
e checker-worker

gene-services
e backend-service

e data

e execution-service

e gateway-service

e scenario-service
web

Comments

Two new extension points are
provided to add
e Backend routines
e Custom data service
extensions
model-checker is renamed into
checker

Workers are in a dedicated folder.

Backend service is included in the
main generic services.

It is expected that no modification
is required within those projects.
Extensions should be performed in
extensions/*

Web frontend coding is separated.

IBM | Migrate to FP3 from FP2 {;;DecisionBrain

Front-end changes

Imports

@gene/web-frontend-base has been split into several libraries. Imports will have to be
updated for the following classes (this list may not be complete)

New package Imports to update
@gene/core AuthenticationService, ApplicationConfiguration, APP_CONFIG
@gene/data GeneContext,

TaskService, NewJobDescription, TaskServiceToken, JobStatus
GeneScenarioApiService, PathNode, PathEvent, Property,
ScenarioStatus, pathNodesComparator
GeneDataAccessService, Access

AggregationQueryResult, PaginatedRequest, Page,
GeneEntityFilter, GeneEntityFilter, INTERNAL_ID_FIELD

@gene/layout GeneDashboardWidgetConfiguration

@gene/widget-core GeneWidgetConfiguration, GeneWidgetManifest,
GeneWidgetConfigurationEvent, ValidationUtils,
GeneCustomWidgetFactoryService,
GeneWidgetConfigurationEventType,
GeneWidgetConfigurationEvent

@gene/widget-data GeneWidgetConfiguration, GeneWidgetManifest,
GeneWidgetConfigurationEvent, ValidationUtils,
GeneCustomWidgetFactoryService,
GeneWidgetConfigurationEventType,
GeneWidgetConfigurationEvent

@gene/common-widget GeneSimpleButtonConfiguration, GeneBaseButtonComponent,
GeneDateRendererComponent,
GeneNavigationTargetConfiguration,
GeneScenarioTimelineComponent

@gene/component GeneModalService, GenePopoverComponent,
GeneloadingOverlayModule, GeneModalComponent,
GeneModalConfiguration, GeneModalDialogButton,
CANCEL_BUTTON

IBM | Migrate to FP3 from FP2 {.;;DecisionBrain

Porting custom widgets

Keeping custom style

The custom widgets made for FP2 should work without trouble in FP3. However due
to style changes (white background and border on all dashboard widgets), you
might want to adjust the style of your widgets. Add the following property to your
widgets manifest to avoid using the new style:

preventDefaultCss:true

This can cause sizing issues and it may be useful to apply the following to the
widgets main containers style (if your widget disappears or does not occupy all
allocated space on the grid) :
top:9;
bottom: 0;
right: 0;
left:0;

position: absolute;

Using platform style

For a more uniform looking user interface, it is recommended to use the platform’s
header in place of (if you have any) custom ones.

To do so:

e don't use preventDefaultCss in your manifest
add the following to your manifest, this will enable configuration for the
header properties:
hasHeader :true,
hasTitle:true,
hasIcon:true
e The style of your widgets main container should probably contain the
following :
height: 100%;

width: 100%;

IBM | Migrate to FP3 from FP2 {.;}DecisionBrain

position: relative;

e Remove custom header and style code from your widget (and possibly header
configuration from your configurator widget)

e Also, remove border styling that will result in double borders using the
platform'’s style

e Make sure that the configuration (hard-coded or returned by the configurator)
contains the following. You may have to remove and add again your widget to
make sure the configuration is complete :

header: {

visible:true

GeneCustomWidgetWrapper » GeneDynamicWidget

The gene-custom-widget-wrapper component has been replaced with
gene-dynamic-widget. If you used the wrapper, some adjustments will be required

FP2 with wrapper
<gene-custom-widget-wrapper>
<xxx-custom-widget></xxx-custom-widget>
</gene-custom-widget-wrapper>
FP3 with a dynamic widget
<gene-dynamic-widget
[manifest]="manifest"
[widgetConfiguration]="configuration">
</gene-dynamic-widget>

Note that you no longer use a custom selector, but pass the manifest and
configuration for your custom widget

10

